Cho phương trình phức z^2-bz+c=0 (b,c thuộc R)

Câu hỏi :

Cho phương trình phức \[{z^2} - bz + c = 0\] (\[b,{\rm{ }}c \in \mathbb{R}\]) có một nghiệm \[z = 3 + i.\] Tính \[b + c.\]

A.16.

B.4.

C.\[ - 16.\]

D.\[ - 4.\]

* Đáp án

* Hướng dẫn giải

Chọn đáp án A

Ta có \({\left( {3 + i} \right)^2} - b\left( {3 + i} \right) + c = 0 \Leftrightarrow 8 + 6i - 3b - bi + c = 0\)

\( \Leftrightarrow 8 - 3b + c + \left( {6 - b} \right)i = 0 \Leftrightarrow \left\{ \begin{array}{l}6 - b = 0\\8 - 3b + c = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}b = 6\\c = 10\end{array} \right. \Rightarrow b + c = 16.\)

Copyright © 2021 HOCTAP247