Giải phương trình 2^(x+4) + 2^(x+2)=5^(x+1)+4.5^x

Câu hỏi :

Giải phương trình \[{2^{x + 4}} + {2^{x + 2}} = {5^{x + 1}} + {4.5^x}.\]

A.\[x = {\log _{\frac{2}{5}}}\frac{9}{{20}}.\]

B.\[x = {\log _{\frac{2}{5}}}\frac{{20}}{9}.\]

C.\[x = {\log _{\frac{5}{2}}}\frac{9}{{20}}.\]

D.\[x = {\log _{\frac{5}{2}}}\frac{{20}}{9}.\]

* Đáp án

* Hướng dẫn giải

Chọn đáp án D

Ta có \({2^{x + 4}} + {2^{x + 2}} = {5^{x + 1}} + {4.5^x} \Leftrightarrow {2^4}{.2^x} + {2^2}{.2^x} = {5.5^x} + {4.5^x} \Leftrightarrow {20.2^x} = {9.5^x}\)

\( \Leftrightarrow {\left( {\frac{5}{2}} \right)^x} = \frac{{20}}{9} \Leftrightarrow x = {\log _{\frac{5}{2}}}\frac{{20}}{9}.\)

Copyright © 2021 HOCTAP247