A.7.
B.5.
C.6.
D.8.
Chọn đáp án A
Ta có \(y' = \frac{{ - {m^2} + 16}}{{{{\left( {\cos x - m} \right)}^2}}}.\left( { - \sin x} \right) < 0,{\rm{ }}\forall x \in \left( {0;\frac{\pi }{3}} \right)\)(1)
Với \(\forall x \in \left( {0;\frac{\pi }{3}} \right) \Rightarrow \cos x \in \left( {\frac{1}{2};1} \right)\) nên
(1) \( \Leftrightarrow \left\{ \begin{array}{l}{m^2} - 16 < 0\\\left[ \begin{array}{l}m \ge 1\\m \le \frac{1}{2}\end{array} \right.\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} - 4 < m < 4\\\left[ \begin{array}{l}m \ge 1\\m \le \frac{1}{2}\end{array} \right.\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}1 \le m < 4\\ - 4 < m \le \frac{1}{2}\end{array} \right.\).
Bài ra \(m \in \mathbb{Z} \Rightarrow m \in \left\{ {1;2;3; - 3; - 2; - 1;0} \right\}\).
</></>
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247