Cho hàm số y=f(x) có đạo hàm liên tục trên R và đồ thị hàm số

Câu hỏi :

Cho hàm số \[y = f\left( x \right)\] có đạo hàm liên tục trên \[\mathbb{R}\] và đồ thị hàm số \[y = f'\left( x \right)\] như hình vẽ. Bất phương trình \[f\left( x \right) < x + m\] đúng với mọi \[x \in \left( {0;1} \right)\] khi và chỉ khi

A.\[m \ge f\left( 0 \right).\]

B.\[m \ge f\left( 1 \right) - 1.\]

C.\[m >f\left( 0 \right).\]

D.\[m >f\left( 1 \right) - 1.\]

* Đáp án

* Hướng dẫn giải

Chọn đáp án A

Xét hàm số \(g\left( x \right) = f\left( x \right) - x,{\rm{ }}x \in \left( {0;1} \right) \Rightarrow g'\left( x \right) = f'\left( x \right) - 1.\)

Từ hình vẽ, ta thấy với mọi \(x \in \left( {0;1} \right)\)thì \(0 < f'\left( x \right) < 1 \Rightarrow f'\left( x \right) - 1 < 0\)

\( \Rightarrow g'\left( x \right) < 0,\forall x \in \left( {0;1} \right) \Rightarrow g\left( x \right)\) nghịch biến trên \(\left( {0;1} \right) \Rightarrow g\left( x \right) < g\left( 0 \right) = f\left( 0 \right).\)

Khi đó \(m >g\left( x \right)\) có nghiệm với mọi \(x \in \left( {0;1} \right) \Leftrightarrow m \ge f\left( 0 \right)\).

Copyright © 2021 HOCTAP247