A.\[3 + \sqrt {34} .\]
B.\[3 + \sqrt {10} .\]
C.\[6.\]
D.\[3.\]
Chọn đáp án B
Ta có \({\left[ {f'\left( x \right)} \right]^3} + {x^2}.f'\left( x \right) = 2{x^3} + 4{x^2} + 3x + 1 = {\left( {x + 1} \right)^3} + {x^2}\left( {x + 1} \right)\)
\( \Rightarrow {\left[ {f'\left( x \right)} \right]^3} - {\left( {x + 1} \right)^3} + {x^2}\left[ {f'\left( x \right) - x - 1} \right] = 0\)
\( \Rightarrow \left[ {f'\left( x \right) - x - 1} \right].\left[ {{{\left( {f'\left( x \right)} \right)}^2} + \left( {x + 1} \right).f'\left( x \right).{{\left( {x + 1} \right)}^2} + {x^2}} \right] = 0\)(1)
Lại có \({\left( {f'\left( x \right)} \right)^2} + \left( {x + 1} \right).f'\left( x \right).{\left( {x + 1} \right)^2} + {x^2} = {\left[ {f'\left( x \right) + \frac{{x + 1}}{2}} \right]^2} + \frac{3}{4}{\left( {x + 1} \right)^2} + {x^2} \ge 0,\forall x \in \mathbb{R}.\)
Dấu “=” xảy ra \( \Leftrightarrow {\left[ {f'\left( x \right) + \frac{{x + 1}}{2}} \right]^2} = \frac{3}{4}{\left( {x + 1} \right)^2} = {x^2} = 0.\)
Đây là điều kiện vô lý nên dấu “=” không xảy ra \( \Rightarrow {\left[ {f'\left( x \right) + \frac{{x + 1}}{2}} \right]^2} + \frac{3}{4}{\left( {x + 1} \right)^2} + {x^2} >0,\forall x \in \mathbb{R}\)
Do đó (1) \( \Leftrightarrow f'\left( x \right) = x + 1 \Rightarrow f\left( x \right) = \int {\left( {x + 1} \right)dx} = \frac{{{x^2}}}{2} + x + C.\)
Mà \[f\left( 0 \right) = 2 \Rightarrow C = 2 \Rightarrow f\left( x \right) = \frac{{{x^2}}}{2} + x + 2 \Rightarrow \int\limits_0^6 {f\left( x \right)dx} = \left. {\left( {\frac{{{x^3}}}{6} + \frac{{{x^2}}}{2} + 2x} \right)} \right|_0^6 = 66.\]
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247