Giả sử z1, z2 là hai trong các số phức thỏa mãn (z-6)(8+zi) là số thực

Câu hỏi :

A. 20421

A. 20421

B. 20422

C. 522

D. 521

* Đáp án

* Hướng dẫn giải

Giả sử z1, z2 là hai trong các số phức thỏa mãn (z-6)(8+zi) là số thực (ảnh 1)

Giả sử z=x+yi, x,y.Gọi A,B lần lượt là điểm biểu diễn cho các số phức z1,z2 . Suy ra AB=z1z2=4.
* Ta có z68+zi¯=x6+yi.8yxi=8x+6y48x2+y26x8yi. Theo giả thiết z68+zi¯ là số thực nên ta suy ra x2+y26x8y=0. Tức là các điểm A,B thuộc đường tròn C tâm I3;4, bán kính R=5.
* Xét điểm M thuộc đoạn AB thỏa MA+3MB=0OA+3OB=4OM.
Gọi H là trung điểm AB.
Ta có HA=HB=AB2=2MA=34AB=3HM=MAHA=1.
Từ đó HI2=R2HB2=21, IM=HI2+HM2=22, suy ra điểm M thuộc đường tròn C' tâm I3;4 , bán kính r=22.
* Ta có z1+3z2=OA+3OB=4OM=4OM, do đó z1+3z2 nhỏ nhất khi OM nhỏ nhất.
Ta có OMmin=OM0=OIr=522.
Vậy z1+3z2min=4OM0=20422.
Chọn đáp án B

Copyright © 2021 HOCTAP247