Cho hàm số y=x4−2m+1x2+m2 với m là tham số thực. Tìm tất cả các giá trị của m để đồ thị hàm số có ba điểm cực trị tạo thành một tam giác vuông.

Câu hỏi :

Cho hàm số y=x42m+1x2+m2  với m  là tham số thực. Tìm tất cả các giá trị của m  để đồ thị hàm số có ba điểm cực trị tạo thành một tam giác vuông.

A. m=1

B. m=0

C. m=1

D. m>1

* Đáp án

B

* Hướng dẫn giải

Ta có ; y'=4x34m+1x=4xx2m1 .

Để hàm số có ba điểm cực trị  có ba nghiệm phân biệt m+1>0m>1 .

Suy ra tọa độ các điểm cực trị của đồ thị hàm số là:

                            A0;m2, Bm+1;2m1  và Cm+1;2m1 .

Khi đó AB=m+1;2m1m2  và AC=m+1;2m1m2 .

Ycbt AB.AC=0m+1+m+14=0m=1(loi)m=0( tha mãn).

 Chọn B.

Cách áp dụng công thức giải nhanh: Điều kiện để có ba cực trị ab<0m>1.

Ycbt 8a+b3=08.1+2m+13=0m=0.

Copyright © 2021 HOCTAP247