Cho hàm số f(x) có đạo hàm liên tục trên [-1;1] và thỏa mãn f(1) = 0,

Câu hỏi :

Cho hàm số f(x) có đạo hàm liên tục trên [-1;1] và thỏa mãn f(1) = 0,f'(x)2+4f(x)=8x2+16x8 với mọi x thuộc

A. 53

B. 23

C. 15

D. -13

  A. 5

* Đáp án

* Hướng dẫn giải

Ta có:

f'(x)2+4fx=8x2+16x811f'x2dx+2112fxdx=118x2+16x8dx (1).

Xét I=112fxdx, đặt u=fxdv=2dxdu=f'xdxv=2x+2.

Do đó I=112fxdx=2x+2fx11112x+2f'xdx=112x+2f'xdx.

Từ (1) suy ra 11f'x2dx+2112fxdx=118x2+16x8dx

11f'x2dx2112x+2f'xdx+112x+22dx=1112x2+24x4dx

11f'x2x+22dx=0f'x=2x+2fx=x2+2x+C.

Vì f(1)=0 nên C=-3. Suy ra 01fxdx=01x2+2x3dx=53.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi thử THPT QG năm 2021 !!

Số câu hỏi: 200

Copyright © 2021 HOCTAP247