Cho Parabol P:y=x2 và hai điểm A,B thuộc P sao cho AB=2 . Diện tích hình phẳng giới hạn bởi P và đường thẳng AB đạt giá trị lớn nhất bằng?

Câu hỏi :

A.23

A.23

B. 34

C. 43

D. 32

* Đáp án

C

* Hướng dẫn giải

Chọn C

Cách 1: Gọi Aa;a2 ,Bb;b2  với a<b . Ta có AB=2ba2+b2a22=4

 

AB:xaba=ya2b2a2xa1=ya2b+ay=a+bxa+a2y=a+bxab

.S=aba+bxabx2dx=abxabxdx

Đặt t=xa . Suy ra S=0batbatdt=0batbat2dt=bat220bat330ba=ba36

Ta có ba2+b2a22=4ba21+b+a2=4ba2=41+b+a24

Suy ra ba2S=ba36236=43

Dấu bằng xảy ra khi a+b=0ba=2b=1a=1A1;1,B1;1 .

Cách 2: Sử dụng công thức diện tích hình phẳng giới hạn bởi P:y=ax2+bx+c  và trục hoành y=0  là S2=Δ336a4,Δ=b24ac1 .

Tổng quát với P:y=ax2+bx+c  và d:y=mx+n  thì ta lập phương trình hoành độ giao điểm ax2+bx+c=mx+nax2+bmx+cn=0 .

Áp dụng S2=Δ336a4,Δ=bm24acn .

Copyright © 2021 HOCTAP247