Cho hàm số f(x)=x^3-3x^2+1. Có tất cả bao nhiêu giá trị nguyên của tham số m để hàm số

Câu hỏi :

Cho hàm số f(x)=x33x2+1.  Có tất cả bao nhiêu giá trị nguyên của tham số m để hàm số y=|f(sinx+3cosx)+m|  có giá trị nhỏ nhất không vượt quá 5?

A.30

B.32

C.31

D.29

* Đáp án

C

* Hướng dẫn giải

Phương pháp giải:

Áp dụng bổ đề: Cho hàm số f(x), liên tục trên [a;b] ta có: {min[a;b]f(x)=Amax[a;b]f(x)=B⇒ Tìm min[a;  b]|f(x)|=?

TH1: Nếu AB0 min[a;  b]|f(x)|=0.

TH2: Nếu {A>0B>0min[a;  b]|f(x)|=A.

TH3: Nếu {A<0B<0min[a;  b]|f(x)|=B.

Giải chi tiết:

Đặt t=sinx+3cosx

Ta có: t=2(12sinx+32cosx)=2sin(x+π3)t[2;2].

Khi đó ta có: y=|f(sinx+3cosx)+m|=|t33t2+1+m|

Xét hàm số g(t)=t33t2+m+1 trên [2;2] ta được:

g'(t)=3t26tg'(t)=03t26t=0[t=0t=2

Ta có: {g(2)=m19g(0)=m+1g(2)=m3 {min[2;  2]g(t)=m19max[2;  2]g(t)=m+1

TH1: (m+1)(m19)01m19 min[2;  2]|g(t)|=0

⇒ Có 21 giá trị m thỏa mãn bài toán.

TH2: {m19>0m+1>0m>19 min[2;  2]|g(t)|=m19

m195m2419<m24

m{20;21;22;23;24}

⇒ Có 5 giá trị m thỏa mãn bài toán.

TH3: {m19<0m+1<0m<1 min[2;  2]|g(t)|=(m+1)

m15m66m<1

m{6;5;4;3;2}

⇒ Có 5 giá trị thỏa mãn bài toán.

Vậy có: 21+5+5=31 giá trị thỏa mãn bài toán.

Đáp án C

Copyright © 2021 HOCTAP247