Cho hình chóp SABCD có đáy ABCD là hình vuông cạnh 2a cạnh bên SA=a căn 5. mặt bên

Câu hỏi :

Cho hình chóp S.ABCD  có đáy  là hình vuông cạnh 2a cạnh bên SA=a5,  mặt bên SAB  là tam giác cân đỉnh S và thuộc mặt phẳng vuông góc với mặt phẳng đáy. Khoảng cách giữa hai đường thẳng AD và SC bằng:

A.2a155

B.a155

C.4a55

D.2a55

* Đáp án

C

* Hướng dẫn giải

Phương pháp giải:

Gọi H là trung điểm của AB SH(ABCD)

Ta có: AD//BCAD//(SBC)

d(AD,SC)=d(AD,(SBC))=d(A;(SBC))

Ta có: HBAB=d(H;(SBC))d(A;(SBC))=12 d(A;(SBC))=2d(H;(SBC))

Kẻ HKSB d(H;(SBC))=HK

Giải chi tiết:

Cho hình chóp   có đáy  là hình vuông cạnh 2a cạnh bên   mặt bên   là tam giác cân đỉnh S (ảnh 1)

Gọi H là trung điểm của AB SH(ABCD)

Ta có: AD//BC AD//(SBC)

d(AD,SC)=d(AD,(SBC))=d(A;(SBC))

Ta có: HBAB=d(H;(SBC))d(A;(SBC))=12d(A;(SBC))=2d(H;(SBC))

Kẻ HKSB

Vì SH(ABCD)SHAB

Lại có: ABBC(gt)AB(SBC)HK(SBC)

d(H;(SBC))=HK

SH=SA2AH2=SA2(AB2)2 =(a5)2a2=2a

Áp dụng hệ thức lượng trong ΔSHB vuông tại H, có đường cao HK ta có:

HK=SH.BHSH2+BH2=2a.a(2a)2+a2=2a5=2a55

d(A;(SBC))=2d(H;(SBC))=2HK=4a55.

Đáp án C

Copyright © 2021 HOCTAP247