Cho hình chóp tứ giác đều SABCD có cạnh đáy bằng a và mặt bên tạo với đáy một góc45 độ . Thể tích của khối chóp là:

Câu hỏi :

A.V=a36

A.V=a36

B.V=a39

C.V=a324

D.V=a32

* Đáp án

A

* Hướng dẫn giải

Phương pháp giải:

- Gọi O=ACBDSO(ABCD) và M là trung điểm của CD.

- Xác định góc giữa hai mặt phẳng là góc giữa hai đường thẳng lần lượt thuộc hai mặt phẳng và cùng vuông góc với giao tuyến.

- Sử dụng tính chất tam giác vuông cân để tính chiều cao khối chóp.

- Tính thể tích khối chóp VS.ABCD=13SO.SABCD.

Giải chi tiết:

Cho hình chóp tứ giác đều có cạnh đáy bằng a và mặt bên tạo với đáy một góc . Thể tích của khối chóp là:  (ảnh 1)

Gọi O=ACBDSO(ABCD) và M là trung điểm của CD.

Ta có {(SCD)(ABCD)=CDSM(SCD);SMCDOM(ABCD);OMCD

((SCD);(ABCD))=(SM;OM)=SMO=450

ΔSOM là tam giác vuông cân tại O.

Vì ABCD là hình vuông cạnh a nên OM=a2SO=OM=a2.

Vậy thể tích khối chóp là VS.ABCD=13SO.SABCD=13.a2.a2=a36.

Đáp án A

Copyright © 2021 HOCTAP247