Cho hình chóp SABCD có đáy ABCD là hình chữ nhật với AD=a; AB=2a. Cạnh bên vuông góc với đáy

Câu hỏi :

Cho hình chóp S.ABCD có đáy ABCD  là hình chữ nhật với AD=a,AB=2a . Cạnh bên SA vuông góc với đáy. Gọi M,N lần lượt là trung điểm của SB và SD. Tính khoảng cách d từ S đến mặt phẳng (AMN) .

A.d=a63

B.d=2a

C.d=3a2

D.d=a5

* Đáp án

A

* Hướng dẫn giải

Phương pháp giải:

- Tính thể tích chóp S.ABCD, sử dụng tỉ lệ thể tích Simpson tính thể tích khối chóp VS.AMN.

- Sử dụng công thức

SAMN=p(pAM)(pAN)(pMN) với p là nửa chu vi ΔAMN.

Giải chi tiết:

Cho hình chóp có đáy là hình chữ nhật với. Cạnh bên vuông góc với đáy (ảnh 1)

Áp dụng định lí Pytago trong các tam giác vuông SAB,SAD,ABD ta có:

SB=SA2+AB2=4a2+4a2=22a

SD=SA2+AD2=4a2+a2=5a

BD=AB2+AD2=4a2+a2=5a

Khi đó ta có AM=12SB=2a;AN=12SD=a52 (đường trung tuyến trong tam giác vuông).

Ta có: MN là đường trung bình của ΔSBD nên MN=BD2=a52.

Gọi p là nửa chu vi tam giác AMN ta có: p=AM+AN+MN2=2a+a52+a522=2+52a.

⇒ Diện tích tam giác AMN là SAMN=p(pAM)(pAN)(pMN)=a264

Ta có: VS.AMNVS.ABD=SMSB.SNSD=14 VS.AMN=14VS.ABD=18VS.ABCD.

VS.ABCD=13SA.SABCD=13.2a.2a.a=4a33 VS.AMN=18.4a33=a36.

Lại có VS.AMN=13d(S;(AMN)).SAMN, do đó d(S;(AMN))=3VS.AMNSAMN=3.a36a264=a63.

Vậy d(S;(AMN))=a63

Đáp án A.

Copyright © 2021 HOCTAP247