Tính tổng các giá trị nguyên của tham số m trên [-20;20] để hàm số nghịch biến trên khoảng .

Câu hỏi :

Tính tổng các giá trị nguyên của tham số m trên [20;20]  để hàm số y=sinx+msinx1 nghịch biến trên khoảng (π2;π) .

A.209

B.207

C.-209

D.-210

* Đáp án

C

* Hướng dẫn giải

y'=1m(t1)2

Phương pháp giải:

- Đặt t=sinx, xét trên khoảng x(π2;π), tìm khoảng giá trị tương ứng của t, xét xem t có cùng tính tăng giảm với x hay không.

- Đưa bài toán về dạng tìm m đểhàm số y=f(t) đơn điệu trên khoảng cho trước.

Giải chi tiết:

Đặt t=sinx, với x(π2;π) thì t giảm từ 1 về 0.

Khi đó bài toán trở thành: Tìm m để hàm số y=t+mt1 đồng biến trên (0;1) (*).

TXĐ: D=\{1} Hàm số đã cho xác định trên (0;1). Ta có .

Do đó (*)1m(t1)2>01m>0m<1.

Kết hợp điều kiện đề bài ta có 20m<1,mm{20;19;18;...;2}.

Vậy tổng các giá trị của m thỏa mãn là 201918...2=209.

Đáp án C

Copyright © 2021 HOCTAP247