Cho tứ diện ABCDA'B'C'D' có AB,AC,AD đôi một vuông góc với AB=6a , AC=9a , AD=3a

Câu hỏi :

Cho tứ diện ABCD AB,AC,AD đôi một vuông góc với AB=6a , AC=9a , AD=3a . Gọi M,N,P lần lượt là trọng tâm các tam giác ABC,ACD,ADB . Thể tích của khối tứ diện AMNP bằng:

A.2a3

B.4a3

C.6a3

D.8a3

* Đáp án

A

* Hướng dẫn giải

Phương pháp giải:

- Gọi M1,N1,P1 lần lượt là trung điểm của BC,CD,BD, sử dụng công thức tỉ lệ thể tích Simpson, so sánh VAMNP VAM1N1P1.

- Tiếp tục so sánh thể tích hai khối chóp có cùng chiều cao A.M1N1P1 A.BCD, sử dụng tam giác đồng dạng để suy ra tỉ số diện tích hai đáy.

- Tính thể tích khối tứ diện ABCD VABCD=16AB.AC.AD, từ đó tính được VAMNP.

Giải chi tiết:

Cho tứ diện có đôi một vuông góc với  ,  ,  . Gọi   lần lượt là trọng tâm các tam giác . Thể tích của khối tứ diện bằng:  (ảnh 1)

Gọi M1,N1,P1 lần lượt là trung điểm của BC,CD,BD, ta có AMAM1=ANAN1=APAP1=23.

Khi đó VAMNPVAM1N1P1=AMAM1.ANAN1.APAP1=827.

Dễ thấy ΔM1N1P1 đồng dạng với tam giác DBC theo tỉ số k=12 nên SM1N1P1SDBC=14.

Mà hai khối chóp A.M1N1P1 A.BCD có dùng chiều cao nên VA.M1N1P1VABCD=SM1N1P1SDBC=14.

Lại có VABCD=16AB.AC.AD=16.6a.9a.3a=27a3 VA.M1N1P1=14VABCD=27a34.

Vậy VAMNP=827VAM1N1P1=827.27a34=2a3.

Đáp án A

Copyright © 2021 HOCTAP247