Cho hình lăng trụ ABC.A'B'C' có đáy ABC là tam giác vuông cân tại B vầC=2a. Hình chiếu vuông góc cua A'

Câu hỏi :

Cho hình lăng trụ ABC.A'B'C' có đáy ABC là tam giác vuông cân tại B và AC=2a . Hình chiếu vuông góc của A' trên mặt phẳng (ABC) là trung điểm H của cạnh AB A'A=a2 . Thể tích của khối lăng trụ đã cho bằng:

A.a33

B.2a32

C.a362

D.a366

* Đáp án

C

* Hướng dẫn giải

Phương pháp giải:

- Sử dụng tính chất tam giác vuông cân tính độ dài hai cạnh góc vuông.

- Sử dụng định lí Pytago trong tam giác vuông tính độ dài đường cao A'H.

- Sử dụng công thức tính thể tích khối lăng trụ VABC.A'B'C'=A'H.SABC.

Giải chi tiết:

Cho hình lăng trụ có đáy là tam giác vuông cân tại B và. Hình chiếu vuông góc của trên mặt phẳng là trung điểm H của cạnh và . Thể tích của khối lăng trụ đã cho bằng:  (ảnh 1)

Vì tam giác ABC vuông cân tại B nên AB=BC=AC2=a2.

Gọi H là trung điểm của AB, ta có A'H(ABC) AH=BH=12AB=a22.

A'H(ABC)A'HAH nên tam giác A'AH vuông tại H. Áp dụng định lí Pytago ta có:

A'H=AA'2AH2=(a2)2(a22)2=a62.

Ta có: SABC=12AB.BC=12.a2.a2=a2.

Vậy VABC.A'B'C'=A'H.SABC=a62.a2=a362.

Đáp án C

Copyright © 2021 HOCTAP247