Cho các số phức z1=1+3i, z2=-5-3i. Tìm điểm M(x;y) biểu diễn số phức z3 biết rằng trong mặt phẳng phức điểm M nằm trên đường thẳng x - 2y + 1 = 0 và mô đun số phức 3z3 + z2 + 2z1 đ...

Câu hỏi :

Cho các số phức z1=1+3i,z2=53i. Tìm điểm M(x;y) biểu diễn số phức z3, biết rằng trong mặt phẳng phức điểm M nằm trên đường thẳng x2y+1=0 và mô đun số phức w=3z3z22z1 đạt giá trị nhỏ nhất.

A. y=x4+2x2.

* Đáp án

D

* Hướng dẫn giải

Chọn D.

Trắc nghiệm: Thay tọa độ điểm M vào vế trái phương trình đường thẳng kết quả bằng 0 thỏa ta được đáp án A.

Tự luận:

Ta có w=3z3z22z1=3z3+33i=3z3+1iw=3z3+1i=3AM với A(-1:3)

M(x;y) biểu diễn số phức z3 nằm trên đường thẳng d:x2y+1=0 và A1;3d.

Khi đó w=3z3+1i=3AM đạt giá trị nhỏ nhất khi AM ngắn nhất AMd

AMd nên AM có phương trình: 2x+y+1=0.

Khi đó M=AMd nên M35;15.

Copyright © 2021 HOCTAP247