Cho hàm số trùng phương y=ax^4+bx^2+c có đồ thị như hình vẽ. Hỏi đồ thị hàm số y=(x^4+2x^3-4x^2-8x)/((fx)^2+2fx-3) có tổng cộng bao nhiêu tiệm cận đứng?

Câu hỏi :

A.2

A.2

B.3

C.5

D.4

* Đáp án

D

* Hướng dẫn giải

 Cho hàm số trùng phương y=ax^4+bx^2+c có đồ thị như hình vẽ. Hỏi đồ thị hàm số y=(x^4+2x^3-4x^2-8x)/((fx)^2+2fx-3) có tổng cộng bao nhiêu tiệm cận đứng? (ảnh 2)

Ta có [f(x)]2+2f(x)3=0[f(x)=1f(x)=3.

Phương trình f(x)=1 có nghiệm x=0,x=m,x=n trong đó x=0 là nghiệm kép.

Do đó f(x)1=ax2(xm)(xn).

Phương trình f(x)=3 có 2 nghiệm kép x=2,x=2.

Do đó f(x)+3=a(x2)2+(x+2)2.

Vì vậy [f(x)]2+2f(x)3=a2x2(xm)(xn)(x2)2(x+2)2.

Khi đó ta được hàm số y=x(x2)(x+2)2a2x2(xm)(xn)(x2)2(x+2)2.

limx0+y=+ nên đương thẳng  là tiệm cận đứng.

limxm+y=+ nên đường thẳng x=0 là tiệm cận đứng.

limx2+y= nên đường thẳng x=2 là tiệm cận đứng.

limx2y=4a28(2m)(2n) nên đường thẳng x=2 không là tiệm cận đứng.

limxn+y=+ nên đường thẳng x=2  là tiệm cận đứng.

Vậy đồ thị hàm số đã cho có 4 tiệm cận đứng.

Đáp án D

Copyright © 2021 HOCTAP247