Cho hàm số y=ax^3+bx^2+cx+d (a,b,c,d thuộc R) có đồ thị như hình vẽ sau. Có tất cả bao nhiêu giá trị nguyên thuộc đoạn [-2020;2020] của tham số m để phương trình có đúng 2 nghiệm t...

Câu hỏi :

Cho hàm số f(x)=ax3+bx2+cx+d(a,b,c,d) có đồ thị như hình vẽ sau.

A.2020

B.2022

C.2021

D.2019

* Đáp án

D

* Hướng dẫn giải

Ta có 2f(|x|)m=0,(1)

f(|x|)=m2

Xét hàm số t=f(|x|) có đồ thị được suy ra từ đồ thị y=f(x) đã cho như sau

 Cho hàm số y=ax^3+bx^2+cx+d (a,b,c,d thuộc R) có đồ thị như hình vẽ sau. Có tất cả bao nhiêu giá trị nguyên thuộc đoạn [-2020;2020] của tham số m để phương trình   có đúng 2 nghiệm thực phân biệt? (ảnh 2)

Từ đó suy ra pt (1) có đúng hai nghiệm phân biệt khi và chỉ khi [m2=3m2<1[m=6m<2

Kết hợp với điều kiện [2020;2020] suy ra [m=62020m<2 suy ra có 2019 giá trị m nguyên.

Đáp án D

Copyright © 2021 HOCTAP247