Cho số phức z thỏa mãn |z-1-i|+|z-3-2i|= căn bậc hai 5

Câu hỏi :

A. 10

A. 10

B. 5

C. 10

D. 210

* Đáp án

* Hướng dẫn giải

Gọi z=x+yi,x,y
Khi đó z1i+z32i=5 x1+y1i+x3+y2i=5
Trong đó mặt phẳng Oxy, đặt A1;1;B3;2;Ma;b
Số phức z  thỏa mãn (1) là tập hợp điểm Ma;b  trên mặt phẳng hệ tọa độ Oxy thỏa mãn MA+MB=5
Mặt khác AB=312+212=5 nên quỹ tích điểm M  là đoạn thẳng .AB
Ta có z+2i=a+b+2i. Đặt N0;2 thì z+2i=MN
Gọi H là hình chiếu vuông góc của N trên đường thẳng AB
Phương trình AB:x2y+1=0
Ta có H1;0 nên hai điểm A,B nằm cùng phía đối với H
Ta có AN=12+32=10BN=32+2+22=5
M thuộc đoạn thẳng AB nên áp dụng tính chất đường xiên và hình chiếu ta có
ANMNBN=5
Vậy giá trị lớn nhất của z+2i  bằng 5 đạt được khi MB3;2 , tức là MB3;2
Chọn đáp án B

Copyright © 2021 HOCTAP247