Tìm tập hợp tất cả các giá trị của tham số m để hàm số y=1/căn bậc 2(log3(x^2-2x+3m)) có tập xác định là

Câu hỏi :

Tìm tập hợp tất cả các giá trị của tham số m để hàm số y=1log3(x22x+3m)có tập xác định là \[\mathbb{R}\].

A.[23;10]

B.(23;+)

C.[23;+)

D.(;23)

* Đáp án

B

* Hướng dẫn giải

Phương pháp giải:

- Hàm căn thức xác định khi biểu thức trong căn không âm.

- Hàm y=logaf(x)xác định khi và chỉ khi f(x) xác định và f(x)>0.

Giải chi tiết:

Hàm số y=1log3(x22x+3m)có TXĐ là \[\mathbb{R}\] khi và chỉ khi:

{log3(x22x+3m)>0xx22x+3m>0x{x22x+3m>1xx22x+3m>0x

x22x+3m>1xx22x1>3mx(*)

Đặt f(x)=x22x1 ta có f'(x)=2x2=0x=1.

BBT:

 (VD): Tìm tập hợp tất cả các giá trị của tham số m để hàm số có tập xác định là \[\mathbb{R}\].  (ảnh 10)

Dựa vào BBT và từ (*) ta có f(x)>3mx3m<minf(x)=2m>23.

Vậy m(23;+).

Đáp án B

Copyright © 2021 HOCTAP247