Cho hình chóp S.ABC có cạnh SA vuông góc với mặt phẳng ABC biết AB=AC=a

Câu hỏi :

Cho hình chóp \[S.ABC\] có cạnh SA vuông góc với mặt phẳng \[\left( {ABC} \right),\] biết AB=AC=a,BC=a3.Tính góc giữa hai mặt phẳng \[\left( {SAB} \right)\] và (SAC).

A.900

B.300

C.600

D.450

* Đáp án

C

* Hướng dẫn giải

Phương pháp giải:

- Sử dụng định lí: Góc giữa hai mặt phẳng là góc giữa hai đường thẳng lần lượt thuộc hai mặt phẳng và cùng vuông góc với giao tuyến.

- Sử dụng định lí Cô-sin trong tam giác để tính góc: Cho ΔABC, ta có: cosA=AB2+AC2BC22AB.AC.

Giải chi tiết:

 (TH): Cho hình chóp \[S.ABC\] có cạnh vuông góc với mặt phẳng \[\left( {ABC} \right),\] biết Tính góc giữa hai mặt phẳng \[\left( {SAB} \right)\] và  (ảnh 6)

Ta có: {(SAB)(SAC)=SAAB(SAB),ABSAAC(SAC),ACSA((SAB);(SAC))=(AB;AC).

Xét tam giác \[ABC\] ta có: cosBAC=AB2+AC2BC22AB.AC

=a2+a23a22.a2=12BAC=1200

Vậy ((SAB);(SAC))=600.

Đáp án C.

Copyright © 2021 HOCTAP247