(TH): Cho số tự nhiên n thỏa mãn nCo+ nC1+nC2=11. Số hạng chứa x^7 trong khai triển của

Câu hỏi :

Cho số tự nhiên n thỏa mãn Cn0+Cn1+Cn2=11.Số hạng chứa x7 trong khai triển của (x31x2)nbằng:

A.\[ - 4\]

B.9x2

C.4x7

D.12x7

* Đáp án

C

* Hướng dẫn giải

Phương pháp giải:

- Sử dụng công thức Cnk=n!k!(nk)!, giải phương trình Cn0+Cn1+Cn2=11tìm n.

- Sử dụng khai triển nhị thức Niu-tơn \[{\left( {a + b} \right)^n} = \sum\limits_{k = 0}^n {C_n^k{a^{n - k}}{b^k}} \].

- Để tìm số hạng chứa x7ta cho số mũ của x trong khai triển bằng 7, giải phương trình tìm k. Với k vừa tìm được ta suy ra số hạng chứa x7.

Giải chi tiết:

Ta có: Cn0+Cn1+Cn2=11(n2,n)

1+n+n(n1)2=112+2n+n2n=22\[ \Leftrightarrow {n^2} + n - 20 = 0\]

[n=4(tm)n=5(ktm)

Khi đó ta có (x31x2)4=k=04C4k(x3)4k(1x2)k=k=04C4k(1)kx125k(0k4;k).

Để tìm số hạng chứa x7ta cho 125k=7k=1(tm).

Vậy số hạng chứa x7 trong khai triển trên là C41.(1)1x7=4x7.

Đáp án C

Copyright © 2021 HOCTAP247