A.\[ - 4\]
B.
C.
D.
C
Phương pháp giải:
- Sử dụng công thức , giải phương trình tìm n.
- Sử dụng khai triển nhị thức Niu-tơn \[{\left( {a + b} \right)^n} = \sum\limits_{k = 0}^n {C_n^k{a^{n - k}}{b^k}} \].
- Để tìm số hạng chứa ta cho số mũ của x trong khai triển bằng 7, giải phương trình tìm k. Với k vừa tìm được ta suy ra số hạng chứa .
Giải chi tiết:
Ta có:
\[ \Leftrightarrow {n^2} + n - 20 = 0\]
Khi đó ta có .
Để tìm số hạng chứa ta cho .
Vậy số hạng chứa trong khai triển trên là .
Đáp án C
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247