Cho tứ diện đều ABCD M là trung điểm của BC. Khi đó cos của góc giữa hai đường thẳng nào sau đây có giá trị bằng

Câu hỏi :

Cho tứ diện đều ABCD M là trung điểm của BC. Khi đó cos của góc giữa hai đường thẳng nào sau đây có giá trị bằng 36.

A.(AB;AM)

B.(AM;DM)

C.\[\left( {AD;{\mkern 1mu} {\mkern 1mu} DM} \right)\]

D.(AB;DM)

* Đáp án

A

* Hướng dẫn giải

Phương pháp giải:

Sử dụng định lí Cô-sin trong tam giác.

Giải chi tiết:

 (TH): Cho tứ diện đều M là trung điểm của Khi đó cos của góc giữa hai đường thẳng nào sau đây có giá trị bằng  (ảnh 4)

Ta có cosα=36α>600.

Xét đáp án A: (AB;AM)=BAM.

ΔABC đều nên AM là phân giác của BACBAM=300.

Do đó loại đáp án A.

Xét đáp án B và C: Giả sử ABCD là tứ diện đều cạnh 1.

Xét tam giác AMD có AM=DM=32.

Áp dụng định lí Cô-sin trong tam giác AMD có:

cosAMD=AM2+MD2AD22AM.MD=34+3412.34=13

cos(AM;DM)=13⇒ Loại đáp án B.

\[\cos \angle ADM = \frac{{A{D^2} + M{D^2} - A{M^2}}}{{2AD.MD}}\] =1+34342.1.32=33cos(AD;DM)=33⇒ Loại đáp án B.

Xét đáp án D: Gọi N là trung điểm của AC.

Ta có MN//AB(AB;DM)=(MN;DM).

Ta có MN=12AB=12;DM=32;DM=32.

Áp dụng định lí Cô-sin trong tam giác DMNcó:

cosDMN=DM2+MN2DN22DM.MN

=34+14342.32.12=36cos(AB;DM)=36(thỏa mãn).

Đáp án A.

Copyright © 2021 HOCTAP247