(TH): Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SD=3a/2, hình chiếu vuông góc của S

Câu hỏi :

Cho hình chóp \[S.ABCD\] có đáy ABCD là hình vuông cạnh a, SD=3a2, hình chiếu vuông góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Tính theo a thể tích khối chóp SABCD.

A.a34

B.a33

C.a32

D.2a33

* Đáp án

B

* Hướng dẫn giải

Phương pháp giải:

- Gọi H là trung điểm của ABSH(ABCD).

- Sử dụng định lí Pytago tính chiều cao SH.

- Sử dụng công thức tính thể tích khối chóp V=13SH.SABCD.

Giải chi tiết:

 (TH): Cho hình chóp \[S.ABCD\] có đáy là hình vuông cạnh , , hình chiếu vuông góc của trên mặt phẳng là trung điểm của cạnh . Tính theo thể tích khối chóp . (ảnh 13)

Gọi H là trung điểm của ABSH(ABCD)\[ \Rightarrow SH \bot HD \Rightarrow \Delta SHD\] vuông tại H.

Áp dụng định lí Pytago ta có:

HD=AD2+AH2=a2+a24=a52

SH=SD2HD2=9a245a24=a

Vậy VS.ABCD=13SH.SABCD=13.a.a2=a33.

Đáp án B.

Copyright © 2021 HOCTAP247