Cho hình lăng trụ ABC.A'B'C' có thể tích bằng V . Gọi M,N lần lượt là trung điểm của các cạnh AB,A'C'. P là điểm trên cạnh

Câu hỏi :

Cho hình lăng trụ ABC.A'B'C' có thể tích bằng V. Gọi M,N lần lượt là trung điểm của các cạnh AB,A'C'. P là điểm trên cạnh BB' sao cho PB=2PB'. Thể tích của khối tứ diện OMNP bằng:

A.712V

B.512V

C.\[\frac{2}{9}V\]

D.13V

* Đáp án

C

* Hướng dẫn giải

Phương pháp giải:

- Không mất tính tổng quát, ta giả sử ABC.A'B'C' là lăng trụ đứng để bài toán đơn giản hơn.

- Trong (ACC'A') kéo dài NC cắt AA' tại E. Sử dụng tỉ số thể tích Simpson tính VC.MNPVC.MEP.

- Tính VC.MEPVC.ABB'A'=SMEPSABB'A', sử dụng phương pháp phần bù để so sánh SMEPvới \[{S_{ABB'A'}}\]

- Sử dụng nhận xét VC.ABB'A'=23V, từ đó tính VCMNP theo V.

Giải chi tiết:

 (VD): Cho hình lăng trụ có thể tích bằng . Gọi lần lượt là trung điểm của các cạnh . P là điểm trên cạnh sao cho . Thể tích của khối tứ diện bằng:  (ảnh 18)

Không mất tính tổng quát, ta giả sử ABC.A'B'C' là lăng trụ đứng để bài toán đơn giản hơn.

Trong (ACC'A') kéo dài NC cắt AA' tại E.

Áp dụng định lí Ta-lét ta có A'NAC=12=EA'EA=ENECNlà trung điểm của của CECNCE=12.

Ta có: VC.MNPVC.MEP=CMCM.CNCE.CPCP=12VC.MNP=12VC.MEP.

Dựng hình chữ nhật ABFE, ta có:

SABFE=SABB'A';

\[\frac{{{S_{EAM}}}}{{{S_{ABFE}}}} = \frac{1}{2}.\frac{{AM}}{{AB}} = \frac{1}{4}\]; SPEFSABFE=12.PFBF=12.23=13; SPMBSABFE=12.PBBF.BMAB=12.13.12=112.

Khi đó ta có:

SMEP=SABFESEAMSPEFSPMB=SABFE14SABFE13SABFE112SABFE=13SABFE=23SABB'A'

Ta có: VC.MEPVC.ABB'A'=SMEPSABB'A'=23. Mà VC.ABB'A'=23Vnên VC.MEP=23.23V=49V.

Vậy VC.MNP=12VC.MEP=29V.

Đáp án C.

Copyright © 2021 HOCTAP247