A.\[\frac{{a\sqrt {11} }}{4}\]
B.
C.
D.
B
Phương pháp giải:
- Xác định giao điểm hai trục của hai mặt phẳng (SAB) và (ABCD), chứng minh giao điểm đó chính là tâm mặt cầu ngoại tiếp khối chóp.
- Sử dụng định lí Pytago tính bán kính mặt cầu.
Giải chi tiết:
Gọi O là tâm hình vuông ABCD, H là trung điểm của AB, G là trọng tâm ΔSAB.
Vì đều cạnh a nên và .
Ta có: .
Kẻ đường d thẳng qua O và song song với SH là trục của (ABCD).
CMTT ta có , kẻ đường thẳng d đi qua G và song song với tại G là trục của (SAB).
Gọi ta có , do đó \[IS = IA = IB = IC = ID\] hay I là tâm mặt cầu ngoại tiếp khối chóp S.ABCD, bán kính mặt cầu là R=IA.
Dễ thấy IOHG là hình chữ nhật nên , .
Áp dụng định lí Pytago trong tam giác vuông \[OIA\] có: .
Vậy bán kính mặt cầu ngoại tiếp khối chóp S.ABCD là .
Đáp án B.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247