Cho hình chóp SABCD có đáy ABCD là hình vuông cạnh a . Tam SAB giác đều và nằm trong mặt phẳng vuông góc

Câu hỏi :

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy, bán kính mặt cầu ngoại tiếp hình chóp là:

A.\[\frac{{a\sqrt {11} }}{4}\]

B.a216

C.2a3

D.a73

* Đáp án

B

* Hướng dẫn giải

Phương pháp giải:

- Xác định giao điểm hai trục của hai mặt phẳng (SAB) và (ABCD), chứng minh giao điểm đó chính là tâm mặt cầu ngoại tiếp khối chóp.

- Sử dụng định lí Pytago tính bán kính mặt cầu.

Giải chi tiết:

 (VD): Cho hình chóp có đáy là hình vuông cạnh . Tam giác đều và nằm trong mặt phẳng vuông góc với đáy, bán kính mặt cầu ngoại tiếp hình chóp là:  (ảnh 7)

Gọi O là tâm hình vuông ABCD, H là trung điểm của AB, G là trọng tâm ΔSAB.

ΔSAB đều cạnh a nên SHABSH=a32.

Ta có: {(SAB)(ABCD)=ABSH(SAB);SHABSH(ABCD).

Kẻ đường d thẳng qua O và song song với SHd là trục của (ABCD).

CMTT ta có OH(SAB), kẻ đường thẳng d đi qua G và song song với OHd'(SAB) tại G d' là trục của (SAB).

Gọi I=dd' ta có {IdIA=IB=IC=IDId'IS=IA=IB, do đó \[IS = IA = IB = IC = ID\] hay I là tâm mặt cầu ngoại tiếp khối chóp S.ABCD, bán kính mặt cầu là R=IA.

Dễ thấy IOHG là hình chữ nhật nên IO=HG=13SH=13.a32=a36, OA=12AC=a22.

Áp dụng định lí Pytago trong tam giác vuông \[OIA\] có: IA=IO2+OA2=a216.

Vậy bán kính mặt cầu ngoại tiếp khối chóp S.ABCD là R=a216.

Đáp án B.

Copyright © 2021 HOCTAP247