(VDC): Cho hàm số y=x^4-2mx^2+1, có đồ thị (C) với m là tham số thực. Gọi A là điểm thuộc đồ thị có hoành độ bằng 1.

Câu hỏi :

Cho hàm số y=x42mx2+m, có đồ thị (C) với m là tham số thực. Gọi A là điểm thuộc đồ thị (C) có hoành độ bằng 1. Tìm m để tiếp tuyến Δ với đồ thị (C) tại A cắt đường tròn (γ):(x1)2+(y1)2=4 tạo thành một dây cung có độ dài nhỏ nhất.

A.1516

B.1716

C.1516

D.1716

* Đáp án

B

* Hướng dẫn giải

Phương pháp giải:

- Tìm tọa độ điểm A, viết phương trình tiếp tuyến của đồ thị hàm số tại A.

- Tìm điểm cố định mà Δ đi qua với mọi m.

- Xác định tâm I và bán kính R của đường tròn (γ):(x1)2+(y1)2=4.

- Biện luận: Để Δ cắt đường tròn (γ)theo một dây cung có độ dài nhỏ nhất thì d(I;Δ)phải lớn nhất. Sử dụng quan hệ giữa đường vuông góc, đường xiên tìm GTLN của d(I;Δ), từ đó tìm m.

Giải chi tiết:

A(C) và A có hoành độ bằng 1 nên ta có A(1;1m).

Ta có y'=4x34mxy'(1)=44m.

Phương trình tiếp tuyến của (C) tại A là: y=(44m)(x1)+1m(44m)xy3+3m=0(Δ).

 (VDC): Cho hàm số , có đồ thị với m là tham số thực. Gọi A là điểm thuộc đồ thị có hoành độ bằng 1. Tìm m để tiếp tuyến Δ với đồ thị tại A cắt đường tròn tạo thành một dây cung có độ dài nhỏ (ảnh 15)

Ta có:

\[\left( \Delta \right):{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \left( {4 - 4m} \right)x - y - 3 + 3m = 0{\mkern 1mu} {\mkern 1mu} \forall m\]

(4x+3)m+4xy3=0m

{4x+3=04xy3=0{x=34y=0

⇒ Đường thẳng Δ luôn đi qua điểm F(34;0)m.

Đường tròn (γ):(x1)2+(y1)2=4 có tâm I(1;1), bán kính R=2.

Để Δ cắt đường tròn (γ)theo một dây cung có độ dài nhỏ nhất thì d(I;Δ). phải lớn nhất.

Ta có:d(I;Δ)IF (quan hệ đường vuông góc, đường xiên).

d(I;Δ)max=IFIFΔ.

Ta có: IF=(14;1);uΔ=(1;44m).

IF.uΔ=014.11.(44m)=0m=1716.

Vậy để Δ cắt đường tròn (γ):(x1)2+(y1)2=4 tạo thành một dây cung có độ dài nhỏ nhất thì m=1716.

Đáp án B.

Copyright © 2021 HOCTAP247