Cho hàm số y=f(x) có đạo hàm liên tục trên R và có bảng biến thiên của hàm số y=f'(x) như sau:

Câu hỏi :

Cho hàm số y=f(x) có đạo hàm liên tục trên R và có bảng biến thiên của hàm số y=f'(x) như sau:

A. m<f(2)+18

B. m<f(2)10

C. mf(2)10

D. mf(2)+18

* Đáp án

C

* Hướng dẫn giải

Chọn C.

Ta có: \(f\left( x \right) + \frac{1}{4}{x^4} - {x^3} - 3x - m \ge 0 \Leftrightarrow m \le f\left( x \right) + \frac{1}{4}{x^4} - {x^3} - 3x = g\left( x \right).\)(*)

Với g(x)=f(x)+14x4x33x.

Khi đó: g'(x)=f'(x)+x33x23=f'(x)3+x2(x3).

Trên (2;2) thì \(f'\left( x \right) \le 3\) nên g'(x)0.

Do đó: (*)mg(2)=f(2)10.

Copyright © 2021 HOCTAP247