Cho hình lăng trụ ABC.A'B'C' có thể tích là V. Gọi M,N,P là trung điểm các cạnh AA';AB;B'C'. Mặt phẳng

Câu hỏi :

Cho hình lăng trụ ABC.A'B'C' có thể tích là V. Gọi M,N,P là trung điểm các cạnh AA',AB,B'C'. Mặt phẳng \(\left( {MNP} \right)\) chia khối lăng trụ thành hai phần. Tính thể tích phần chứa đỉnh B theo V.

A. 47V144

B. 49V144

C. 37V72

D. V3

* Đáp án

B

* Hướng dẫn giải

Chọn B.

Cho hình lăng trụ có thể tích là . Gọi là trung điểm các cạnh . Mặt phẳng \(\left( {MNP} \right)\) chia khối lăng trụ thành hai phần. Tính thể tích phần chứa đỉnh theo . (ảnh 1)

Ta dựng được thiết diện là ngũ giác MNQPR.

Đặt \(d\left( {B;\left( {A'B'C'} \right)} \right) = h,A'B' = a,d\left( {C;A'B'} \right) = 2b.\)

Khi đó ta có thể tích lăng trụ V=12.d(C';A'B').A'B'.d[B;(A'B'C')]=12.2b.a.h=abh.

Xét hình chóp L.JPB' có:

LNLJ=LBLB'=NBJB'=13suy ra d[L;(A'B'C')]=32d[B;(A'B'C')]=32h,JB'=32A'B'=32a,d(P;A'B')=12d(C';A'B')=b.

Suy ra thể tích khối chóp L.JPB' là VLJPB'=13.32h.12.32a.b=38abh=38V.

Mặt khác ta có: \(\frac{{{V_{L.NBQ}}}}{{{V_{L.JPB'}}}} = \frac{{LN}}{{LJ}}.\frac{{LB}}{{LB'}}.\frac{{LQ}}{{LP}} = \frac{1}{3}.\frac{1}{3}.\frac{1}{3} = \frac{1}{{27}} \Rightarrow {V_{LNBQ}} = \frac{1}{{27}}{V_{LJPB'}} = \frac{1}{{27}}.\frac{3}{8}V = \frac{1}{{72}}V\)

VJ.RA'MVLJPB'=JMJL.JA'JB'.JRJP=13.13.12=118VL.NBQ=118VL.JPB'=118.38V=148V.

Suy ra thể tích khối đa diện VNQBB'PRA'=VLJPB'VL.NBQVJ.A'RM=38V172V148V=49144V.

Copyright © 2021 HOCTAP247