Cho lăng trụ ABC.A'B'C' có đáy ABC là tam giác đều cạnh a. Hình chiếu của A' lên mặt phẳng (ABC) trùng với trung điểm

Câu hỏi :

Cho lăng trụ ABC.A'B'C' có đáy ABC là tam giác đều cạnh a. Hình chiếu của A' lên mặt phẳng (ABC) trùng với trung điểm BC. Tính khoảng cách d giữa hai đường thẳng B'C' và AA' biết góc giữa hai mặt phẳng (ABB'A') và \(\left( {A'B'C'} \right)\) bằng 600.

A.d=3a4.

B.d=3a714.

C.d=a2114.

D.d=a34.

D.\(V = \frac{{4{a^3}}}{3}.\)

D. Đồ thị hàm số có hai đường tiệm cận ngang.

* Đáp án

A

* Hướng dẫn giải

Hướng dẫn gải:

Cho lăng trụ có đáy là tam giác đều cạnh Hình chiếu của lên mặt phẳng trùng với trung điểm Tính khoảng cách giữa hai đường thẳng và biết góc giữa hai mặt phẳng và \(\left( {A'B'C'} \right)\)  (ảnh 12)Cho lăng trụ có đáy là tam giác đều cạnh Hình chiếu của lên mặt phẳng trùng với trung điểm Tính khoảng cách giữa hai đường thẳng và biết góc giữa hai mặt phẳng và \(\left( {A'B'C'} \right)\)  (ảnh 13)

Gọi M,N lần lượt là trung điểm của BC,B'C'.

Gọi N,E lần lượt là trung điểm của AB, BN.

Góc giữa hai mặt phẳng (ABB'A')(A'B'C') bằng góc giữa hai mặt phẳng (ABB'A') và (ABC).

CNABME//CN nên MEAB(1)

Mặt khác A'M(ABC)A'MAB(2)

Từ (1) và (2) ta có \(AB \bot \left( {A'EM} \right) \Rightarrow \widehat {\left( {\left( {ABB'A'} \right);\left( {ABC} \right)} \right)} = \widehat {A'EM} = {60^0}.\)

CN=AM=a32;ME=12CN=a34.

Trong tam giác vuông A'EM có A'M=ME.tan600=3a4.

Có A'M'B'C'(3)

A'M(ABC)A'M(A'B'C')A'MB'C'(4)

Từ (3) và (4) suy ra B'C'(AMM'A').

Trong mặt phẳng (AMM'A') từ M kẻ M'KAA'M'K chính là đoạn vuông góc chung giữa AA' và B'C'

Trong mặt phẳng \(\left( {AMM'A'} \right)\) từ M kẻ \(MI \bot AA' \Rightarrow MI = M'K.\)

Trong tam giác A'MA vuông tại M có 1MI2=1AM2+1MA'2=289a2MI=3a714.

Vậy d=3a714.

Đáp án A

Copyright © 2021 HOCTAP247