Biết điểm M(0;4) là điểm cực đại của đồ thị hàm số f(x)=x^3+ax^2+bx+a^2. Tính

Câu hỏi :

Biết điểm M(0;4) là điểm cực đại của đồ thị hàm số f(x)=x3+ax2+bx+a2.Tính \(f\left( 3 \right).\)

A.f(3)=17.

B.f(3)=34.

C.f(3)=49.

D. f(3)=13.

D.\(V = \frac{{4{a^3}}}{3}.\)

D. Đồ thị hàm số có hai đường tiệm cận ngang.

* Đáp án

D

* Hướng dẫn giải

Hướng dẫn gải:

Ta có \(f'\left( x \right) = 3{x^2} + 2ax + b\)

Điều kiện cần để điểm M(0;4) là điểm cực đại của hàm số f(x) là:

\(\left\{ \begin{array}{l}f'\left( 0 \right) = 0\\f\left( 0 \right) = 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}b = 0\\{a^2} = 4\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}a = 2\\b = 0\end{array} \right.\\\left\{ \begin{array}{l}a = - 2\\b = 0\end{array} \right.\end{array} \right.\)

Điều kiện đủ.

Trường hợp 1: {a=2b=0 ta có f(x)=x3+2x2+4,f'(x)=3x2+4x,f'(x)=0[x=0x=43

Bảng xét dấu f'(x)

Biết điểm là điểm cực đại của đồ thị hàm số Tính \(f\left( 3 \right).\)Hướng dẫn gải: (ảnh 8)

Vậy \(f\left( x \right) = {x^3} - 2{x^2} + 4 \Rightarrow f\left( 3 \right) = 13.\)Nên M(0;4) là điểm cực tiểu của đồ thị hàm số (loại).

Đáp án D

Copyright © 2021 HOCTAP247