Cho hình hộp ABCD.A'B'C'D' có thể tích bằng V. Gọi G là trọng tâm tam giác A'BC và I' là trung điểm của

Câu hỏi :

Cho hình hộp ABCD.A'B'C'D' có thể tích bằng V. Gọi G là trọng tâm tam giác \(A'BC\) và I' là trung điểm của A'D'. Thể tích khối tứ diện GB'C'I' bằng:

A.V6.

B.2V5.

C.V9.

D. V12.

D.\(V = \frac{{4{a^3}}}{3}.\)

D. Đồ thị hàm số có hai đường tiệm cận ngang.

* Đáp án

C

* Hướng dẫn giải

Hướng dẫn gải:

Cho hình hộp có thể tích bằng Gọi là trọng tâm tam giác \(A'BC\) và là trung điểm của Thể tích khối tứ diện bằng:Hướng dẫn gải: (ảnh 7)

Gọi I là trung điểm đoạn BC

Ta có SΔB'C'I'=SΔA'B'C'=12SA'B'C'D'=12B

d(G;(A'B'C'D'))d(I;(A'B'C'D'))=GA'IA'=23d(G;(A'B'C'D'))=23d(I;(A'B'C'D'))=23h

\( \Rightarrow {V_{GB'C'I'}} = \frac{1}{3}d\left( {G;\left( {A'B'C'D'} \right)} \right).{S_{\Delta B'C'I'}} = \frac{1}{3}.\frac{2}{3}h.\frac{1}{2}B = \frac{1}{9}B.h\)

VGB'C'I'=19V

Đáp án C

Copyright © 2021 HOCTAP247