Cho hàm số y=f(x) có đồ thị như hình vẽ dưới đây. Có bao nhiêu giá trị nguyên m phương trình

Câu hỏi :

Cho hàm số y=f(x) có đồ thị như hình vẽ dưới đây. Có bao nhiêu giá trị nguyên m phương trình f(2sinx+12cosx+12)=f(m) có nghiệm.

A. 4.

B.7.

C.6.

D. 5.

D.\(V = \frac{{4{a^3}}}{3}.\)

D. Đồ thị hàm số có hai đường tiệm cận ngang.

* Đáp án

C

* Hướng dẫn giải

Hướng dẫn gải:

Đặt \(t = \sqrt 2 \sin x + \frac{1}{2}\cos x + \frac{1}{2},\) ta có:

t12=32(223sinx+13cosx)=32(sinxcosα+cosxsinα) (Với cosα=223)

t12=32sin(x+α).

Suy ra: 32t12321t2.

Từ đồ thị hàm số suy ra: t[1;2]1f(t)5.

Vậy để phương trình f(2sinx+12cosx+12)=f(m) có nghiệm thì 1f(m)5.

Từ đồ thị suy ra: \(m \in \left\{ { - 2; - 1;0;1;2;3} \right\}.\) Vậy có 6 giá trị nguyên của m.

Đáp án C

Copyright © 2021 HOCTAP247