Cho hình lập phương ABCD.A'B'C'D' cạnh bằng 2. Điểm M,N lần lượt nằm trên đoạn thẳng AB' và CD' sao cho

Câu hỏi :

Cho hình lập phương ABCD.A'B'C'D' cạnh bằng 2. Điểm M,N lần lượt nằm trên đoạn thẳng AC' và CD' sao cho \(\frac{{C'M}}{{C'A}} = \frac{{D'N}}{{2D'C}} = \frac{1}{4}.\) Tính thể tích tứ diện CC'NM.

A.16.

B.\(\frac{1}{4}.\)

C.18.

D. \(\frac{3}{8}.\)

D.\(V = \frac{{4{a^3}}}{3}.\)

D. Đồ thị hàm số có hai đường tiệm cận ngang.

* Đáp án

A

* Hướng dẫn giải

Hướng dẫn gải:

Cho hình lập phương cạnh bằng 2. Điểm lần lượt nằm trên đoạn thẳng và sao cho \(\frac{{C'M}}{{C'A}} = \frac{{D'N}}{{2D'C}} = \frac{1}{4}.\) Tính thể tích tứ diện Hướng dẫn gải: (ảnh 6)

Ta có:

C'MC'A=14d(M;(CC'D'D))=14d(A;(CC'D'D))=14.2=12.

\(\frac{{D'N}}{{2D'C}} = \frac{1}{4} \Leftrightarrow \frac{{D'N}}{{D'C}} = \frac{1}{2}\) nên N là trung điểm của CD', suy ra: \({S_{CC'N}} = \frac{1}{4}{S_{CC'D'D}} = \frac{1}{4} \times 2 \times 2 = 1.\)

Vậy VCC'NM=13d(M;(CC'D'D)).SCCN=16.

Đáp án A

Copyright © 2021 HOCTAP247