Cho hình chóp S.ABC có SA=4, SA vuông góc với (ABC). Tam giác ABC vuông cân tại B và AC=2.H,K lần lượt thuộc SB,SC sao cho HS=HB, KC=2KS. Thể tích khối chóp A.BHKC

Câu hỏi :

A.92.

A.92.

B.109.

C.209.

D.43.

D.\(V = \frac{{4{a^3}}}{3}.\)

D. Đồ thị hàm số có hai đường tiệm cận ngang.

* Đáp án

B

* Hướng dẫn giải

 Cho hình chóp S.ABC có SA=4, SA vuông góc với (ABC). Tam giác ABC vuông cân tại B và AC=2.H,K lần lượt thuộc SB,SC sao cho HS=HB, KC=2KS. Thể tích khối chóp A.BHKC  (ảnh 1)

Tam giác ABC vuông cận tại B nên AC=AB2AB=AC2=2.

Thể tích khối chóp S.ABC là VS.ABC=13.SA.SABC=13.4.12.2.2=43.

VS.AHKVS.ABC=SASA.SHSB.SKSC=1.12.13=16VS.AHK=16VS.ABC

VA.BHKC=VS.ABCVS.AHK=56.VS.ABC

             =56.43=109.

Vậy thể tích khối chóp A.BHKC là 109.

Đáp án B.

Copyright © 2021 HOCTAP247