Trong hệ tọa độ Oxyz , cho điểm A(2;1;3) , mặt phẳng

Câu hỏi :

Trong hệ tọa độ Oxyz, cho điểm A2;1;3, mặt phẳng (α):2x+2yz3=0 và mặt cầu (S):x2+y2+z26x4y10z+2=0. Gọi Δ là đường thẳng đi qua A, nằm trong mặt phẳng (α) và cắt (S) tại hai điểm M,N . Độ dài đoạn nhỏ nhất là:

A. 230

B. 30

C. 302

D. 3302

* Đáp án

* Hướng dẫn giải

Trong hệ tọa độ Oxyz , cho điểm A(2;1;3) , mặt phẳng  (ảnh 1)

+ Mặt cầu (S) có tâm I3;2;5 và bán kính R=6.

Ta có: A(α), IA=6<R nên (S)(α)=(C) và A nằm trong mặt cầu (S).

Suy ra: Mọi đường thẳng Δ đi qua A, nằm trong mặt phẳng (α) đều cắt (S) tại hai điểm M,N. (  cũng chính là giao điểm của Δ và ).

+ Vì d(I,Δ)IA nên ta có: MN=2R2d2(I,Δ)2R2IA2=230.

Dấu "=" xảy ra khi A là điểm chính giữa dây cung MN.

Vậy độ dài đoạn MN nhỏ nhất là bằng 230.

Chọn đáp án A

Copyright © 2021 HOCTAP247