Cho hình chóp S.ABC có mặt phẳng (SAC) vuông góc với mặt phẳng (ABC)

Câu hỏi :

Cho hình chóp S.ABC có mặt phẳng (SAC) vuông góc với mặt phẳng (ABC), SAB là tam giác đều cạnh a3, BC=a3, đường thẳng SC tạo với mặt phẳng (ABC) góc 60°. Thể tích của khối chóp S.ABC bằng

A. a333

B. a362

C. a366

D. 2a36

* Đáp án

* Hướng dẫn giải

Cho hình chóp S.ABC có mặt phẳng (SAC) vuông góc với mặt phẳng (ABC) (ảnh 1)
Ta thấy tam giác ABC cân tại B, gọi H là trung điểm của AB suy ra BHAC.
Do SACABC nên BHSAC.
Ta lại có BA=BC=BS nên B thuộc trục đường tròn ngoại tiếp tam giác ABCH là tâm đường tròn ngoại tiếp tam giác SACSASC.
Do AC là hình chiếu của SC lên mặt phẳng ABCSCA^=600.
Ta có SC=SA.cot600=a, AC=SAsin600=2aHC=aBH=BC2HC2=a2, .
VS.ABC=13BH.SSAC=16BH.SA.SC=a366.
Chọn đáp án C

Copyright © 2021 HOCTAP247