Có bao nhiêu giá trị nguyên của tham số m thuộc [-20;20] để tồn tại

Câu hỏi :

Có bao nhiêu giá trị nguyên của tham số m20;20 để tồn tại các số thực x, y thỏa mãn đồng thời e3x+5y10ex+3y9=12x2ylog523x+2y+4m+6log2x+5+m2+9=0.

A. 22

B. 23

C. 19

D. 31

* Đáp án

* Hướng dẫn giải

Ta có e3x+5y10ex+3y9=12x2y
e3x+5y10ex+3y9=x+3y93x+5y10
e3x+5y10+3x+5y10=ex+3y9+x+3y9
Xét hàm số ft=et+t, t.
Ta có: f't=et+1>0, t. Suy ra hàm số ft luôn đồng biến trên R
3x+5y10=x+3y92y=12x.
Thay vào phương trình thứ 2, ta được
log523x+2y+4m+6log2x+5+m2+9=0log52x+5m+6log2x+5+m2+9=0log52x+5m+6log25.log5x+5+m2+9=01.
Đặt log5x+5=t t, x>5. Khi đó phương trình (1) trở thành
t2log25.m+6t+m2+9=0 (2).
Tồn tại x, y thỏa mãn yêu cầu bài toán khi và chỉ khi phương trình (2) có nghiệm nên Δ=m+62.log2254m2+90log2254m2+12.log225.m361log2250mm1mm2.
với m143.91 và m22.58
Do m20;20m nên m2;1;0;...;19;20.
Vậy có 23 giá trị của thỏa mãn yêu cầu bài toán.
Chọn đáp án B

Copyright © 2021 HOCTAP247