Gọi (H) là hình phẳng giới hạn bởi đồ thị hàm số: y=x^2-4x+4 , trục tung

Câu hỏi :

Gọi (H) là hình phẳng giới hạn bởi đồ thị hàm số: y=x24x+4, trục tung và trục hoành. Xác định  để đường thẳng (d) đi qua điểm A0;4 có hệ số góc k chia (H) thành hai phần có diện tích bằng nhau.

A. k=4

B. k=8

C. k=6

D. k=2

* Đáp án

* Hướng dẫn giải

Phương trình hoành độ giao điểm của đồ thị hàm số y=x24x+4 và trục hoành là: x24x+4=0x=2.
Diện tích hình phẳng (H) giới hạn bởi đồ thị hàm số: y=x24x+4, trục tung và trục hoành là: S=02x24x+4dx=02x24x+4dx=x332x2+4x02=83.
Phương trình đường thẳng (d) đi qua điểm A0;4
có hệ số góc k có dạng: y=kx+4.
Gọi B là giao điểm của (d) và trục hoành. Khi đó B4k;0.
Đường thẳng (d) chia (H) thành hai phần có diện tích
bằng nhau khi BOISΔOAB=12S=43.
0<4k<2SΔOAB=12OA.OB=12.4.4k=43k<2k=6k=6
Gọi (H) là hình phẳng giới hạn bởi đồ thị hàm số: y=x^2-4x+4 , trục tung  (ảnh 1)
Chọn đáp án C

Copyright © 2021 HOCTAP247