Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng 2a. Cạnh bên SA vuông góc với mặt phẳng đáy (ABCD).

Câu hỏi :

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh bằng \(2a.\) Cạnh bên \(SA\) vuông góc với mặt phẳng đáy \(\left( {ABCD} \right).\) Góc giữa mặt phẳng \(\left( {SBC} \right)\) và mặt đáy bằng \({60^0}.\) Tính thể tích của khối chóp.

A.\(\frac{{8{a^3}\sqrt 3 }}{3}.\)

B.\({a^3}\sqrt 3 .\)

C.\(6{a^3}\sqrt 3 .\)

D. \(8{a^3}\sqrt 3 .\)

* Đáp án

A

* Hướng dẫn giải

Đáp án A.

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng 2a. Cạnh bên SA vuông góc với mặt phẳng đáy (ABCD). (ảnh 1)

Ta có \(\left\{ \begin{array}{l}BC \bot AB\left( 1 \right)\\BC \bot SA\end{array} \right. \Rightarrow BC \bot SB\left( 2 \right).\)

Từ (1) và (2) suy ra góc giữa mặt phẳng \(\left( {SBC} \right)\) và mặt đáy \(\left( {ABCD} \right)\) là góc \(\widehat {SBA}\), kết hợp giả thiết suy ra \(\widehat {SBA} = {60^0}.\)

Xét tam giác vuông \(SAB\) ta có \(\tan {60^0} = \frac{{SA}}{{AB}} \Rightarrow SA = AB.\tan {60^0} = 2a\sqrt 3 .\)

Thể tích của khối chóp \(S.ABCD\) là \(V = \frac{1}{3}.Bh = \frac{1}{3}{S_{ABCD}}.SA = \frac{1}{3}{\left( {2a} \right)^2}2a\sqrt 3 = \frac{{8{a^3}\sqrt 3 }}{3}.\)

Copyright © 2021 HOCTAP247