Cho bất phương trình ln(x^3 - 2x^2 + m)>=ln(x^2+5), Có bao nhiêu giá trị nguyên của tham số m [- 20;20] để bất phương

Câu hỏi :

Cho bất phương trình \(\ln \left( {{x^3} - 2{x^2} + m} \right) \ge \ln \left( {{x^2} + 5} \right).\) Có bao nhiêu giá trị nguyên của tham số \(m \in \left[ { - 20;20} \right]\) để bất phương trình đúng nghiệm với mọi \(x\) trên đoạn \(\left[ {0;3} \right].\)

A.10.

B.12.

C.41.

D.11.

* Đáp án

B

* Hướng dẫn giải

Đáp án B.

Theo yêu cầu bài toán ta có:

\(\ln \left( {{x^3} - 2{x^2} + m} \right) \ge \ln \left( {{x^2} + 5} \right),\forall x \in \left[ {0;3} \right] \Leftrightarrow {x^3} - 2{x^2} + m \ge {x^2} + 5,\forall x \in \left[ {0;3} \right]\)

\( \Leftrightarrow m \ge - {x^3} + 3{x^2} + 5,\forall x \in \left[ {0;3} \right]\)

\( \Leftrightarrow m \ge \mathop {\max }\limits_{\left[ {0;3} \right]} \left( { - {x^3} + 3{x^2} + 5} \right)\)

Xét hàm số \(f\left( x \right) = - {x^3} + 3{x^2} + 5,\forall x \in \left[ {0;3} \right] \Rightarrow f'\left( x \right) = - 3{x^2} + 6x = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 2\end{array} \right..\)

Ta có: \(f\left( 0 \right) = 5,f\left( 2 \right) = 9,f\left( 3 \right) = 5 \Rightarrow \mathop {\max }\limits_{\left[ {0;3} \right]} f\left( x \right) = 9.\)

Do đó ta được \(m \ge 9,\) kết hợp với điều kiện \(m \in \left[ { - 20;20} \right]\) nên \(m \in \left\{ {9;10;11;...;20} \right\}\) do đó có 12 giá trị nguyên của \(m\) thỏa mãn bài toán.

Copyright © 2021 HOCTAP247