A. 1.
B. 3.
C. 2.
D. 0.
A
Đáp án A.
Đặt \(t = {\log _3}x.\) Khi đó phương trình trở thành: \({t^2} - \left( {2m + 1} \right)t + {m^2} + m = 0\left( * \right).\)
Nhận xét: Ứng với mỗi nghiệm \(t\) của phương trình \(\left( * \right)\) có một nghiệm \(x >0.\)
Vậy phương trình đã cho có hai nghiệm dương phân biệt khi phương trình \(\left( * \right)\) có hai nghiệm phân biệt \( \Leftrightarrow \Delta >0 \Leftrightarrow \Delta = {\left( {2m + 1} \right)^2} - 4\left( {{m^2} + m} \right) = 1 >0.\)
Vậy phương trình \(\left( * \right)\) luôn có hai nghiệm phân biệt với mọi \(m.\)
Khi đó \({t_1} = \frac{{2m + 1 + 1}}{2} = m + 1 \Rightarrow {x_1} = {3^{m + 1}};{t_2} = \frac{{2m + 1 - 1}}{2} = m \Rightarrow {x_2} = {3^m}\) với \({x_1} < {x_2}.\)
Theo đề bài
\(\left( {{x_1} + 1} \right)\left( {{x_2} + 3} \right) = 48 \Leftrightarrow \left( {{3^m} + 1} \right)\left( {{3^{m + 1}} + 3} \right) = 48 \Leftrightarrow {3.3^{2m}} + {6.3^m} - 45 = 0 \Leftrightarrow \left[ \begin{array}{l}{3^m} = 3\\{3^m} = - 5\end{array} \right. \Leftrightarrow m = 1.\)
Kết luận: Số phần tử của tập \(S\) là 1.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247