A. 5.
B. 7.
C. 4.
D. 6.
A
Đáp án A.
\(f\left( {2 - f\left( x \right)} \right) = \left[ \begin{array}{l}2 - f\left( x \right) = a;a \in \left( { - 2; - 1} \right)\\2 - f\left( x \right) = b;b \in \left( {0;1} \right)\\2 - f\left( x \right) = c;c \in \left( {1;2} \right)\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}f\left( x \right) = 2 - a;2 - a \in \left( {3;4} \right)\\f\left( x \right) = 2 - b;2 - b \in \left( {1;2} \right)\\f\left( x \right) = 2 - c;2 - c \in \left( {0;1} \right)\end{array} \right.\)
Nhìn vào đồ thị ta có
Trường hợp: \(f\left( x \right) = 2 - a;2 - a \in \left( {3;4} \right)\) có 1 nghiệm.
Trường hợp: \(f\left( x \right) = 2 - b;2 - b \in \left( {1;2} \right)\) có 1 nghiệm.
Trường hợp: \(f\left( x \right) = 2 - c;2 - c \in \left( {0;1} \right)\) có 3 nghiệm.
Vậy phương trình \(f\left( {2 - f\left( x \right)} \right) = 0\) có 5 nghiệm thực.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247