Cho phương trình (log2(x))^2+ 2m(log 2)x + 2m - 2 = 0 với m là tham số. Có bao nhiêu giá trị nguyên của m để phương trình

Câu hỏi :

Cho phương trình \(\log _2^2x + 2m{\log _2}x + 2m - 2 = 0\) với \(m\) là tham số. Có bao nhiêu giá trị nguyên của \(m\) để phương trình đã cho có hai nghiệm phân biệt \({x_1},{x_2}\) thỏa mãn \({x_1} \le 64{x_2} \le 4096{x_1}?\) 

A. 3.

B. 5.

C. 4.

D. Vô số.

* Đáp án

B

* Hướng dẫn giải

Đáp án B.

Điều kiện: \(x >0\)

Đặt \(t = {\log _2}x.\) Phương trình trở thành: \({t^2} + 2mt + 2m - 2 = 0\left( * \right).\)

Để phương trình có 2 nghiệm phân biệt \({x_1},{x_2}\) thì (*) có 2 nghiệm phân biệt \({t_1},{t_2}\)

\( \Rightarrow \Delta ' >0 \Leftrightarrow {m^2} - 2m + 2 >0 \Leftrightarrow \forall m \in \mathbb{R}.\) Khi đó: \({t_1} + {t_2} = - 2m,{t_1}{t_2} = 2m - 2.\)

Ta có: \({\log _2}{x_1} = {t_1},{\log _2}{x_2} = {t_2} \Rightarrow \left\{ \begin{array}{l}{x_1} = {2^{{t_1}}}\\{x_2} = {2^{{t_2}}}\end{array} \right..\)

Từ điều kiện

\({x_1} \le 64{x_2} \le 4096{x_1}.\)

\( \Leftrightarrow {2^{{t_1}}} \le {2^6}{.2^{{t_2}}} \le {2^{12}}{.2^{{t_1}}} \Leftrightarrow {2^{{t_1}}} \le {2^{6 + {t_2}}} \le {2^{12 + {t_1}}}\)

\( \Leftrightarrow \left\{ \begin{array}{l}{t_1} - {t_2} \le 6\\{t_1} - {t_2} \ge - 6\end{array} \right. \Leftrightarrow \left| {{t_1} - {t_2}} \right| \le 6\)

\( \Leftrightarrow {\left( {{t_1} + {t_2}} \right)^2} - 4{t_1}{t_2} \le 36 \Leftrightarrow {\left( { - 2m} \right)^2} - 4\left( {2m - 2} \right) \le 36\)

\( \Leftrightarrow {m^2} - 2m - 7 \le 0\)

\( \Leftrightarrow 1 - 2\sqrt 2 \le m \le 1 + 2\sqrt 2 \)

Có 5 giá trị nguyên của \(m \in \left[ {1 - 2\sqrt 2 ;1 + 2\sqrt 2 } \right].\)

Copyright © 2021 HOCTAP247