Cho hàm số f(x) có bảng biến thiên như sau: Có bao nhiêu giá trị nguyên của tham số m để trên đoạn

Câu hỏi :

Cho hàm số \(f\left( x \right)\) có bảng biến thiên như sau:

A.4.

B.2.

C.3.

D. 5.

* Đáp án

A

* Hướng dẫn giải

Đáp án A.

Xét hàm số \(y = g\left( x \right) = 3f\left( {{x^2} - 2x - 1} \right)\) trên đoạn \(\left[ { - 1;2} \right].\)

Ta có \(y' = g'\left( x \right) = 3\left( {2x - 2} \right).f'\left( {{x^2} - 2x - 1} \right).\)

\(y' = 0 \Leftrightarrow \left[ \begin{array}{l}2x - 2 = 0\\{x^2} - 2x - 1 = - 2\\{x^2} - 2x - 1 = - 1\\{x^2} - 2x - 1 = 1\\{x^2} - 2x - 1 = 2\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = 0\\x = 2\\x = 1 + \sqrt 3 \notin \left[ { - 1;2} \right]\\x = 1 - \sqrt 3 \\x = - 1\\x = 3 \notin \left[ { - 1;2} \right]\end{array} \right.\)

Ta có \(x = - 1 \Rightarrow g\left( { - 1} \right) = 3.f\left( 2 \right) = 12\)

\(x = 1 - \sqrt 3 \Rightarrow g\left( {1 - \sqrt 3 } \right) = 3.f\left( 1 \right) = 15\)

\(x = 0 \Rightarrow g\left( 0 \right) = 3.f\left( { - 1} \right) = - 15\)

\(x = 1 \Rightarrow g\left( 1 \right) = 3.f\left( { - 2} \right) = - 12\)

\(x = 2 \Rightarrow g\left( 2 \right) = 3.f\left( { - 1} \right) = - 15\)

Ta có bảng biến thiên:

Cho hàm số f(x) có bảng biến thiên như sau: Có bao nhiêu giá trị nguyên của tham số m để trên đoạn (ảnh 2)

Trên đoạn \(\left[ { - 1;2} \right]\) số nghiệm của phương trình \(3f\left( {{x^2} - 2x - 1} \right) = m\) chính là số giao điểm của đồ thị hàm số \(y = 3f\left( {{x^2} - 2x - 1} \right)\) với đường thẳng \(y = m.\) Vậy để phương trình có đúng hai nghiệm thực phân biệt trên đoạn \(\left[ { - 1;2} \right]\) thì \(\left[ \begin{array}{l}m = - 12\\12 \le m < 15\end{array} \right..\) Vậy các giá trị nguyên của \(m\) là: \( - 12,12,13,14.\) Có bốn giá trị nguyên của \(m\) nên ta chọn đáp án A.

Copyright © 2021 HOCTAP247