Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh 2a,SA vuông góc với đáy và SA = a. Gọi I là trung điểm của

Câu hỏi :

Cho hình chóp \(S.ABC\) có đáy \(ABC\) là tam giác đều cạnh \(2a,SA\) vuông góc với đáy và \(SA = a.\) Gọi \(I\) là trung điểm của \(AC.\) Khoảng cách từ \(I\) đến mặt phẳng \(\left( {SBC} \right)\) bằng

A.\(\frac{{a\sqrt {15} }}{{10}}.\)

B.\(\frac{{a\sqrt 3 }}{4}.\)

C.\(\frac{{a\sqrt {15} }}{5}.\)

D. \(\frac{{a\sqrt 3 }}{2}.\)

* Đáp án

A

* Hướng dẫn giải

Đáp án A.

Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh 2a,SA vuông góc với đáy và SA = a. Gọi I là trung điểm của (ảnh 1)

Gọi \(M\) là trung điểm của \(BC.\) Suy ra \(AM \bot BC\) và \(AM = \frac{{2a\sqrt 3 }}{2} = a\sqrt 3 .\)

Gọi \(K\) là hình chiếu của \(A\) trên \(SM.\) Suy ra \[AK \bot SM\left( 1 \right).\]

Ta có: \(\left\{ \begin{array}{l}AM \bot BC\\BC \bot SA\end{array} \right. \Rightarrow BC \bot \left( {SAM} \right) \Rightarrow BC \bot AK\left( 2 \right).\)

Từ (1) và (2) suy ra \(AK \bot \left( {SBC} \right) \Rightarrow d\left( {A;\left( {SBC} \right)} \right) = AK.\)

Do \(I\) là trung điểm của \(AC\) nên \(d\left( {I,\left( {SBC} \right)} \right) = \frac{1}{2}d\left( {A;\left( {SBC} \right)} \right) = \frac{{AK}}{2}.\)

Trong \(\Delta SAM\) có \(AK = \frac{{SA.AM}}{{\sqrt {S{A^2} + A{M^2}} }} = \frac{{a.a\sqrt 3 }}{{\sqrt {{a^2} + 3{a^2}} }} = \frac{{a\sqrt 3 }}{2}\)

Vậy \(d\left( {I,\left( {SBC} \right)} \right) = \frac{{a\sqrt 3 }}{4}.\)

Copyright © 2021 HOCTAP247