A.\(y = \frac{x}{2}.\)
B.\(y = {x^3} + 3x.\)
C.\(y = \frac{1}{x}.\)
D.\(y = \frac{{{x^2} - 2x}}{{x - 1}}.\)
C
Đáp án C.
+ Ta có hàm số \(y = \frac{x}{2}\) và \(y = {x^3} + 3x\) là hai hàm đa thức nên không có tiệm cận ngang.
+ Xét hàm số: \(y = \frac{1}{x}\)
\(\mathop {\lim }\limits_{x \to + \infty } \frac{1}{x} = 0;\mathop {\lim }\limits_{x \to - \infty } \frac{1}{x} = 0\) nên đồ thị hàm số có tiệm cận ngang là đường thẳng \(y = 0.\)
+ Xét hàm số: \(y = \frac{{{x^2} - 2x}}{{x - 1}}\)
\(\mathop {\lim }\limits_{x \to + \infty } \frac{{{x^2} - 2x}}{{x - 1}} = + \infty ;\mathop {\lim }\limits_{x \to - \infty } \frac{{{x^2} - 2x}}{{x - 1}} = - \infty \) nên đồ thị hàm số không có tiệm cận ngang.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247