Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng 2a, cạnh bên bằng 3a. Tính thể tích V của hình chóp đã cho.

Câu hỏi :

Cho hình chóp tứ giác đều \(S.ABCD\) có cạnh đáy bằng \(2a,\) cạnh bên bằng \(3a.\) Tính thể tích \(V\) của hình chóp đã cho.

A.\(V = 4\sqrt 7 {a^3}.\)

B. \(V = \frac{4}{3}{a^3}.\)

C.\(V = \frac{{4\sqrt 7 {a^3}}}{3}.\)

D. \(V = \frac{{4\sqrt 7 {a^3}}}{9}.\)

* Đáp án

C

* Hướng dẫn giải

Đáp án C.

Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng 2a, cạnh bên bằng 3a. Tính thể tích V của hình chóp đã cho. (ảnh 1)

Gọi \(O = AC \cap BD.\)

Vì \(S.ABCD\) là hình chóp tứ giác đều nên \(SO \bot \left( {ABCD} \right).\)

Theo bài ra ta có: \(OA = \frac{1}{2}AC = a\sqrt 2 .\)

Xét tam giác \(SOA\) vuông tại \(O\) ta có: \(SO = \sqrt {S{A^2} - O{A^2}} = \sqrt {{{\left( {3a} \right)}^2} - {{\left( {a\sqrt 2 } \right)}^2}} = a\sqrt 7 .\)

Diện tích hình vuông \(ABCD\) bằng: \({S_{ABCD}} = {\left( {2a} \right)^2} = 4{a^2}.\)

Thể tích của khối chóp \(S.ABCD\) bằng: \({V_{S.ABCD}} = \frac{1}{3}.SO.{S_{ABCD}} = \frac{1}{3}.a\sqrt 7 .4{a^2} = \frac{{4\sqrt 7 {a^3}}}{3}.\)

Copyright © 2021 HOCTAP247