Cho hàm số y=f(x) liên tục trên R có đồ thị như hình vẽ. Có bao nhiêu giá trị nguyên của tham số m để phương trình

Câu hỏi :

Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) có đồ thị như hình vẽ.

A. 5.

B. 2.

C. 4.

D. 3.

* Đáp án

C

* Hướng dẫn giải

Đáp án C.

Cho hàm số y=f(x) liên tục trên R có đồ thị như hình vẽ. Có bao nhiêu giá trị nguyên của tham số m để phương trình (ảnh 2)

Với \(x \in \left[ {0;\frac{\pi }{2}} \right)\) ta có \(0 < \cos x \le 1\) từ đồ thị suy ra \( - 2 \le f\left( {\cos x} \right) < 0.\)

Do vậy \(0 \le 4 + 2f\left( {\cos x} \right) < 4\) từ đây ta được \(0 \le \sqrt {4 + 2f\left( {\cos x} \right)} < 2.\)

Lại từ đồ thị ta có \( - 2 \le f\left( {\sqrt {4 + 2f\left( {\cos x} \right)} } \right) < 2\) suy ra phương trình \(f\left( {\sqrt {4 + 2f\left( {\cos x} \right)} } \right) = m\) có nghiệm khi và chỉ khi \( - 2 \le m < 2.\)

Xét với \(m \in \mathbb{Z}\) ta chọn \(m \in \left\{ { - 2; - 1;0;1} \right\}.\)

Vậy có 4 giá trị nguyên của tham số \(m\) để phương trình \(f\left( {\sqrt {4 + 2f\left( {\cos x} \right)} } \right) = m\) có nghiệm \(x \in \left[ {0;\frac{\pi }{2}} \right).\)

Copyright © 2021 HOCTAP247